Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502542

RESUMO

Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.


Assuntos
Cnidários , Hydra , Animais , Opsinas/genética , Opsinas/química , Opsinas/metabolismo , Cnidários/genética , Cnidários/metabolismo , Hydra/genética , Hydra/metabolismo , Filogenia , Ritmo Circadiano/genética
2.
Dev Comp Immunol ; 155: 105139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38325499

RESUMO

Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.


Assuntos
Hydra , Piroptose , Animais , Caspases/genética , Caspases/metabolismo , Hydra/metabolismo , Gasderminas , Caspase 3/metabolismo
3.
Mol Biol Cell ; 35(3): br9, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265917

RESUMO

Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.


Assuntos
Hydra , Animais , Hydra/metabolismo , Pinocitose
4.
Dev Comp Immunol ; 149: 104904, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37543221

RESUMO

Pyroptosis, an inflammatory form of programmed cell death, is directly executed by gasdermin (GSDM) depending on its N-terminal pore-forming fragment-mediated membrane-disrupting, triggering intracellular contents release, which plays important roles in mammalian anti-infection and anti-tumor immune responses. However, whether pyroptosis engages in the regulation of tissue regeneration remains largely unknown. Here, utilizing Hydra vulgaris as the research model, we found that an HyCARD2-HyGSDME-mediated pyroptosis signalling is activated in both head and foot regenerated tips after amputation. Impeding pyroptosis by knocking down the expression of either HyGSDME or HyCARD2 significantly hampered both head and foot regeneration in Hydra. Mechanistically, the activation of HyCARD2-HyGSDME axis at wound sites is dependent of intracellular mitochondrial reactive oxygen species (mtROS), the removing of which hindered Hydra head regeneration. Moreover, the HyCARD2-HyGSDME axis-gated pyroptosis was found to enhance the initial secretion and upregulated expression of Wnt3. Collectively, these findings indicate that gasdermin-gated pyroptosis is critical for the evoking of Wnt signalling to facilitate Hydra tissue regeneration, which provides insights into functional diversification within the gasdermin family in the animal kingdom.


Assuntos
Hydra , Piroptose , Animais , Hydra/metabolismo , Gasderminas , Apoptose , Via de Sinalização Wnt , Inflamassomos/metabolismo , Mamíferos
5.
Mol Cell ; 83(14): 2595-2611.e11, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421941

RESUMO

RNA-binding proteins (RBPs) control RNA metabolism to orchestrate gene expression and, when dysfunctional, underlie human diseases. Proteome-wide discovery efforts predict thousands of RBP candidates, many of which lack canonical RNA-binding domains (RBDs). Here, we present a hybrid ensemble RBP classifier (HydRA), which leverages information from both intermolecular protein interactions and internal protein sequence patterns to predict RNA-binding capacity with unparalleled specificity and sensitivity using support vector machines (SVMs), convolutional neural networks (CNNs), and Transformer-based protein language models. Occlusion mapping by HydRA robustly detects known RBDs and predicts hundreds of uncharacterized RNA-binding associated domains. Enhanced CLIP (eCLIP) for HydRA-predicted RBP candidates reveals transcriptome-wide RNA targets and confirms RNA-binding activity for HydRA-predicted RNA-binding associated domains. HydRA accelerates construction of a comprehensive RBP catalog and expands the diversity of RNA-binding associated domains.


Assuntos
Aprendizado Profundo , Hydra , Animais , Humanos , RNA/metabolismo , Ligação Proteica , Sítios de Ligação/genética , Hydra/genética , Hydra/metabolismo
6.
Biochemistry (Mosc) ; 88(5): 667-678, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331712

RESUMO

Glutaredoxin (Grx) is an antioxidant redox protein that uses glutathione (GSH) as an electron donor. Grx plays a crucial role in various cellular processes, such as antioxidant defense, control of cellular redox state, redox control of transcription, reversible S-glutathionylation of specific proteins, apoptosis, cell differentiation, etc. In the current study, we have isolated and characterized dithiol glutaredoxin from Hydra vulgaris Ind-Pune (HvGrx1). Sequence analysis showed that HvGrx1 belongs to the Grx family with the classical Grx motif (CPYC). Phylogenetic analysis and homology modeling revealed that HvGrx1 is closely related to Grx2 from zebrafish. HvGrx1 gene was cloned and expressed in Escherichia coli cells; the purified protein had a molecular weight of 11.82 kDa. HvGrx1 efficiently reduced ß-hydroxyethyl disulfide (HED) with the temperature optimum of 25°C and pH optimum 8.0. HvGrx1 was ubiquitously expressed in all body parts of Hydra. Expression of HvGrx1 mRNA and enzymatic activity of HvGrx1 were significantly upregulated post H2O2 treatment. When expressed in human cells, HvGrx1 protected the cells from oxidative stress and enhanced cell proliferation and migration. Although Hydra is a simple invertebrate, HvGrx1 is evolutionary closer to its homologs from higher vertebrates (similar to many other Hydra proteins).


Assuntos
Glutarredoxinas , Hydra , Animais , Humanos , Glutarredoxinas/genética , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hydra/genética , Hydra/metabolismo , Antioxidantes/metabolismo , Filogenia , Peróxido de Hidrogênio , Peixe-Zebra/metabolismo , Índia , Proteínas/química , Oxirredução , Glutationa/metabolismo
7.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944423

RESUMO

The evolution of the first body axis in the animal kingdom and its extensive ability to regenerate makes Hydra, a Cnidarian, an excellent model system for understanding the underlying epigenetic mechanisms. We identify that monomethyltransferase SETD8 is critical for regeneration in Hydra because of its conserved interaction with ß-catenin to fine-tune the associated gene regulatory network. Inhibition of SETD8 activity abolishes head and foot regeneration in Hydra Furthermore, we show that H4K20me1, the histone mark imparted by SETD8, colocalizes with the transcriptional activation machinery locally at the ß-catenin-bound TCF/LEF-binding sites on the promoters of head-associated genes, marking an epigenetic activation mode. In contrast, genome-wide analysis of the H4K20me1 occupancy revealed a negative correlation with transcriptional activation. We propose that H4K20me1 acts as a general repressive histone mark in Cnidaria and describe its dichotomous role in transcriptional regulation in Hydra.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Regulação da Expressão Gênica/genética , Ativação Transcricional , Regiões Promotoras Genéticas/genética
8.
Curr Top Dev Biol ; 153: 381-417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967201

RESUMO

Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, ß-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.


Assuntos
Hydra , Via de Sinalização Wnt , Animais , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hydra/genética , Hydra/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
9.
Genome Res ; 33(2): 283-298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639202

RESUMO

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Cromossomos , Epigênese Genética
10.
Biochem Biophys Res Commun ; 637: 23-31, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375247

RESUMO

Thioredoxin (Trx) and glutathione disulfide (GSSG), are regenerated in reduced state by thioredoxin reductase (TrxR) and glutathione reductase (GR) respectively. A novel protein thioredoxin glutathione reductase (TGR) capable of reducing Trx as well as GSSG, linking two redox systems, has only been reported so far from parasitic flat worms and mammals. For the first time, we report a multifunctional antioxidant enzyme TGR from the nonparasitic, nonmammalian cnidarian Hydra vulgaris (HvTGR) which is a selenoprotein with unusual fusion of a TrxR domain with glutaredoxin (Grx) domain. We have cloned and sequenced HvTGR which encodes a polypeptide of 73 kDa. It contains conserved sequence CPYC of Grx domain, and CVNVGC and GCUG domains of thioredoxin reductase. Phylogenetic analysis revealed HvTGR to be closer to TGR from mammals rather than to TGR from parasitic helminths. We then subcloned HvTGR in plasmid pSelExpress-1 and expressed it in HEK293T cells to ensure selenocysteine incorporation. Purified HvTGR showed Grx, glutathione reductase and TrxR activities. Both thioredoxin and GSSG disulfide reductase activities were inhibited by 1-Chloro-2,4-dinitrobenzene (DNCB) supporting the existence of an essential selenocysteine residue. HvTGR expression was induced in response to H2O2 in Hydra. Interestingly, inhibition of HvTGR by DNCB, inhibited regeneration in Hydra indicating its involvement in other cellular processes.


Assuntos
Hydra , Tiorredoxina Dissulfeto Redutase , Animais , Humanos , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Hydra/genética , Hydra/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio , Filogenia , Dinitroclorobenzeno , Células HEK293 , Glutationa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Oxirredução , Antioxidantes/metabolismo , Mamíferos/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(29): e2203257119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858299

RESUMO

How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in Hydra and is regulated by Hydra LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in Hydra. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.


Assuntos
Via de Sinalização Hippo , Hydra , Morfogênese , Animais , Padronização Corporal , Hydra/genética , Hydra/crescimento & desenvolvimento , Hydra/metabolismo , Morfogênese/genética , Transcrição Gênica , Proteínas de Sinalização YAP/metabolismo
12.
Biomacromolecules ; 23(8): 3116-3129, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35786858

RESUMO

Rapalogues are powerful therapeutic modalities for breast cancer; however, they suffer from low solubility and dose-limiting side effects. To overcome these challenges, we developed a long-circulating multiheaded drug carrier called 5FA, which contains rapamycin-binding domains linked with elastin-like polypeptides (ELPs). To target these "Hydra-ELPs" toward breast cancer, we here linked 5FA with four distinct peptides which are reported to engage the cell surface form of the 78 kDa glucose-regulated protein (csGRP78). To determine if these peptides affected the carrier solubility, this library was characterized by light scattering and mass spectrometry. To guide in vitro selection of the most potent functional carrier for rapamycin, its uptake and inhibition of mTORC1 were monitored in a ductal breast cancer model (BT474). Using flow cytometry to track cellular association, it was found that only the targeted carriers enhanced cellular uptake and were susceptible to proteolysis by SubA, which specifically targets csGRP78. The functional inhibition of mTOR was monitored by Western blot for pS6K, whereby the best carrier L-5FA reduced mTOR activity by 3-fold compared to 5FA or free rapamycin. L-5FA was further visualized using super-resolution confocal laser scanning microscopy, which revealed that targeting increased exposure to the carrier by ∼8-fold. This study demonstrates how peptide ligands for GRP78, such as the L peptide (RLLDTNRPLLPY), may be incorporated into protein-based drug carriers to enhance targeting.


Assuntos
Neoplasias da Mama , Hydra , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Portadores de Fármacos/química , Elastina/química , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Hydra/metabolismo , Peptídeos/química , Sirolimo/química , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico
13.
Methods Mol Biol ; 2450: 635-647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359333

RESUMO

In addition to its ability to regenerate any amputated body part, the Hydra freshwater polyp shows the amazing ability to regenerate as a full polyp after a complete dissociation of its tissues. The developmental processes at work in reaggregates undergoing whole-body regeneration can be investigated at the molecular level by RNA interference (RNAi). Here we provide a protocol that combines ß-catenin RNAi with reaggregation. This protocol serves as a basis to generate "RNAi-reaggregates," followed by the extraction of high-quality RNA for the precise quantification of gene expression by real-time PCR. This protocol is efficient, providing both a molecular signature, with the significant downregulation of ß-catenin and Wnt3, as well as a robust phenotype, the lack of axis formation, which is observed in all reaggregates.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , Interferência de RNA , beta Catenina/genética , beta Catenina/metabolismo
14.
J Biochem ; 171(1): 41-51, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34523686

RESUMO

Thioredoxins, small disulphide-containing redox proteins, play an important role in the regulation of cellular thiol redox balance through their disulfide reductase activity. In this study, we have identified, cloned, purified and characterized thioredoxin 1 (HvTrx1) from the Cnidarian Hydra vulgaris Ind-Pune. Bioinformatics analysis revealed that HvTrx1 contains an evolutionarily conserved catalytic active site Cys-Gly-Pro-Cys and shows a closer phylogenetic relationship with vertebrate Trx1. Optimum pH and temperature for enzyme activity of purified HvTrx1 was found to be pH 7.0 and 25°C, respectively. Enzyme activity decreased significantly at acidic or alkaline pH as well as at higher temperatures. HvTrx1 was found to be expressed ubiquitously in whole mount in situ hybridization. Treatment of Hydra with hydrogen peroxide (H2O2), a highly reactive oxidizing agent, led to a significant increase in gene expression and enzyme activity of Trx1. Further experiments using PX12, an inhibitor of Trx1, indicated that Trx1 plays an important role in regeneration in Hydra. Finally, by using growth assay in Escherichia coli and wound healing assay in human colon cancer cells, we demonstrate that HvTrx1 is functionally active in both prokaryotic and eukaryotic heterologous systems.


Assuntos
Cnidários , Hydra , Animais , Clonagem Molecular , Cnidários/metabolismo , Humanos , Hydra/genética , Hydra/metabolismo , Peróxido de Hidrogênio , Índia , Oxirredução , Filogenia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
15.
Sci Rep ; 11(1): 20627, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663887

RESUMO

Cnidarians are characterized by the possession of stinging organelles, called nematocysts, which they use for prey capture and defense. Nematocyst discharge is controlled by a mechanosensory apparatus with analogies to vertebrate hair cells. Members of the transient receptor potential (TRPN) ion channel family are supposed to be involved in the transduction of the mechanical stimulus. A small molecule screen was performed to identify compounds that affect nematocyst discharge in Hydra. We identified several [2.2]paracyclophanes that cause inhibition of nematocyst discharge in the low micro-molar range. Further structure-activity analyses within the compound class of [2.2]paracyclophanes showed common features that are required for the inhibitory activity of the [2.2]paracyclophane core motif. This study demonstrates that Hydra can serve as a model for small molecule screens targeting the mechanosensory apparatus in native tissues.


Assuntos
Hydra/imunologia , Nematocisto/efeitos dos fármacos , Nematocisto/fisiologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Cnidários , Hydra/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/fisiologia
16.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346482

RESUMO

In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.


Assuntos
Hydra , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Hydra/genética , Hydra/metabolismo , Inibidores da Agregação Plaquetária , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-34230037

RESUMO

Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.


Assuntos
Hydra , Animais , Ciclo Celular , Divisão Celular , Homeostase , Hydra/metabolismo , Células-Tronco/fisiologia
18.
Methods Mol Biol ; 2366: 67-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236633

RESUMO

Extensive genomic and transcriptomic sequencing over the past decade has revealed NF-κB signaling pathway homologs in organisms basal to insects, for example, in members of the phyla Cnidaria (e.g., sea anemones, corals, hydra, jellyfish) and Porifera (sponges), and in several single-celled protists (e.g., Capsaspora owczarzaki, some choanoflagellates). Therefore, methods are required to study the function of NF-κB and its pathway members in early branching organisms, many of which do not have histories as model organisms. Here, we describe a combination of cellular, molecular, and biochemical techniques that have been used for studying NF-κB, and related pathway proteins, in some of these basal organisms. These methods are useful for studying the evolution of NF-κB signaling, and may be adaptable to the study of NF-κB in other non-model organisms.


Assuntos
Transdução de Sinais , Animais , Evolução Molecular , Genômica , Hydra/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Anêmonas-do-Mar
19.
Sci Rep ; 11(1): 10828, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031445

RESUMO

The last common ancestor of Bilateria and Cnidaria is believed to be one of the first animals to develop a nervous system over 500 million years ago. Many of the genes involved in the neural function of the advanced nervous system in Bilateria are well conserved in Cnidaria. Thus, the cnidarian Hydra vulgaris is a good model organism for the study of the putative primitive nervous system in its last common ancestor. The diffuse nervous system of Hydra consists of several peptidergic neuron subsets. However, the specific functions of these subsets remain unclear. Using calcium imaging, here we show that the neuron subsets that express neuropeptide, Hym-176, function as motor circuits to evoke longitudinal contraction. We found that all neurons in a subset defined by the Hym-176 gene (Hym-176A) or its paralogs (Hym-176B) expression are excited simultaneously, followed by longitudinal contraction. This indicates not only that these neuron subsets have a motor function but also that a single molecularly defined neuron subset forms a single coactive circuit. This is in contrast with the bilaterian nervous system, where a single molecularly defined neuron subset harbors multiple coactive circuits, showing a mixture of neurons firing with different timings. Furthermore, we found that the two motor circuits, one expressing Hym-176B in the body column and the other expressing Hym-176A in the foot, are coordinately regulated to exert region-specific contraction. Our results demonstrate that one neuron subset is likely to form a monofunctional circuit as a minimum functional unit to build a more complex behavior in Hydra. This simple feature (one subset, one circuit, one function) found in Hydra may represent the simple ancestral condition of neural evolution.


Assuntos
Hydra/fisiologia , Imagem Molecular/veterinária , Neuropeptídeos/metabolismo , Animais , Evolução Biológica , Sinalização do Cálcio , Hydra/metabolismo , Neurônios/fisiologia , Distribuição Tecidual
20.
Curr Top Dev Biol ; 141: 371-397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602493

RESUMO

The development of powerful model systems has been a critical strategy for understanding the mechanisms underlying the progression of an animal through its ontogeny. Here we provide two examples that allow deep and mechanistic insight into the development of specific animal systems. Species of the cnidarian genus Hydra have provided excellent models for studying host-microbe interactions and how metaorganisms function in vivo. Studies of the Hawaiian bobtail squid Euprymna scolopes and its luminous bacterial partner Vibrio fischeri have been used for over 30 years to understand the impact of a broad array of levels, from ecology to genomics, on the development and persistence of symbiosis. These examples provide an integrated perspective of how developmental processes work and evolve within the context of a microbial world, a new view that opens vast horizons for developmental biology research. The Hydra and the squid systems also lend an example of how profound insights can be discovered by taking advantage of the "experiments" that evolution had done in shaping conserved developmental processes.


Assuntos
Decapodiformes/embriologia , Decapodiformes/microbiologia , Hydra/microbiologia , Microbiota , Aliivibrio fischeri , Animais , Decapodiformes/fisiologia , Embrião não Mamífero/microbiologia , Regulação da Expressão Gênica , Hydra/metabolismo , Luz , Simbiose , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...